Saturday, January 26, 2008

Is This The Beginnings Of Artificial Life?

In what many believe to be a case of creating artificial life, American scientists have found a way of replication a bacterium's 582,970 base pair genome which should allow for the creation of biofuel-manufacturing bacteria - in other words, building bacteria from scratch that might produce fuel for things like cars. It is the largest man-made DNA structure ever made. The previous largest one contained only 32,000 base pairs.

You can read about this in Science magazine.

Dr. Hamilton Smith, J Craig Venter Institute, Rockville, USA, and sixteen others built a bacterium's genome by chemically synthesizing DNA blocks. These blocks were then weaved together to create bigger DNA pieces - these can be formed to create a synthetic version of Mycoplasma genitalium. The scientists say these tailor-made micro-organisms can be designed to produce hydrogen, or tweaked to absorb surplus carbon dioxide in the air.

The team is not using the term artificial life; they prefer to call it synthetic life. Dr. Smith, in a BBC interview, said "We like to distinguish synthetic life from artificial life. It sets the stage for what we hope is going to be a new approach to engineering organisms."

The J Craig Venter Institute (JCVI) says this is the second of three key steps towards the team's aim of creating a fully synthetic organism. They are currently trying to create a living bacterial cell, based completely on the synthetically made genome.

J. Craig Venter, Ph.D., President and Founder of JCVI, said "This extraordinary accomplishment is a technological marvel that was only made possible because of the unique and accomplished JCVI team. Ham Smith, Clyde Hutchison, Dan Gibson, Gwyn Benders, and the others on this team dedicated the last several years to designing and perfecting new methods and techniques that we believe will become widely used to advance the field of synthetic genomics."

The scientists explain that building blocks of DNA - adenine (A), guanine (G), cytosine (C) and thymine (T) are tremendously tricky chemicals to artificially synthesize into chromosomes. The longer the strands become the more brittle they are, making it very hard to work with them. Making the genome of the M. genitalium bacteria with over 580,000 base pairs was an enormous challenge.

Hamilton Smith said "When we started this work several years ago, we knew it was going to be difficult because we were treading into unknown territory. Through dedicated teamwork we have shown that building large genomes is now feasible and scalable so that important applications such as biofuels can be developed."

Ethics

Ever since the beginning of this project, the team has been concerned with the ethical issues related to their work. The creation of life by humankind is bound to trigger controversy.

About the J. Craig Venter Institute

The JCVI is a not-for-profit research institute dedicated to the advancement of the science of genomics; the understanding of its implications for society; and communication of those results to the scientific community, the public, and policymakers. Founded by J. Craig Venter, Ph.D., the JCVI is home to approximately 400 scientists and staff with expertise in human and evolutionary biology, genetics, bioinformatics/informatics, information technology, high-throughput DNA sequencing, genomic and environmental policy research, and public education in science and science policy. The legacy organizations of the JCVI are: The Institute for Genomic Research (TIGR), The Center for the Advancement of Genomics (TCAG), the Institute for Biological Energy Alternatives (IBEA), the Joint Technology Center (JTC), and the J. Craig Venter Science Foundation. The JCVI is a 501 (c)(3) organization. For additional information, please visit http://www.JCVI.org.

No comments: